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 1 

Abstract: 27 

From June to October, low-level clouds in the Southeast (SE) Atlantic often underlie 28 

seasonal aerosol layers transported from African continent. Previously, the Cloud-29 

Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar 30 

observations have been used to estimate the relative vertical location of the above-cloud 31 

aerosols (ACA) to the underlying clouds. Here, we show new observations from NASA’s 32 

Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm 33 

observations reveal that the bottom of the ACA layer is much lower than previously 34 

estimated based on CALIPSO 532nm observations. For about 60% of CATS nighttime 35 

ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying 36 

cloud. Our results are important for future studies of the microphysical indirect and semi-37 

direct effects of ACA in the SE Atlantic region.    38 

 39 

1. Introduction 40 

Every year from about June to October over the southeast (SE) Atlantic, the prevailing 41 

easterly winds in the free troposphere often transport the smoke and pollution aerosols 42 

from the African continent to the west, over the ocean where extensive marine boundary 43 

layer (MBL) clouds persist for most of the year [Adebiyi and Zuidema, 2016]. This leads 44 

to a near-persistent seasonal biomass burning aerosol layer over MBL clouds in SE 45 

Atlantic [Devasthale and Thomas, 2011; Zhang et al., 2016].  46 

As summarized in Yu and Zhang [2013] instruments onboard NASA’s A-train satellite 47 

constellation provide valuable observations of the aerosol layer and underlying clouds. In 48 

particular, the lidar on the space-borne mission CALIPSO provides unique observations 49 

of the vertical distribution of the aerosol layer that have been widely used to characterize 50 

the aerosol layer above cloud over SE Atlantic [Chand et al., 2008; Yu et al., 2010; 51 

Devasthale and Thomas, 2011; Meyer et al., 2013] and assess its impacts on the radiation 52 

budget [Chand et al., 2009; Zhang et al., 2016].  53 

 54 

The seasonally transported SE Atlantic aerosol layer can influence the regional radiative 55 

energy budget through the direct radiative effect (DRE) [Chand et al., 2009; Zhang et al., 56 

2016]. The absorption by aerosol layer can also influence the thermodynamical structure 57 

of lower atmosphere and in turn change cloud field, which is known as the semi-direct 58 

effect [Johnson et al., 2004; Wilcox, 2010; Sakaeda et al., 2011; Wilcox, 2012]. The sign 59 

and magnitude of the semi-direct effect are strongly dependent on the vertical distribution 60 

of aerosol with respect to the underlying clouds [Johnson et al., 2004]. In addition to 61 

DRE and semi-direct effect, the aerosol particles could be entrained into the clouds and 62 

activated as cloud condensation nuclei, giving rise to the so-called aerosol indirect effects 63 

[Costantino and Bréon, 2010; 2013; Painemal et al., 2015]. Intuitively, the closer the 64 

bottom of the aerosol layer gets to the top of underlying cloud, the more likely the aerosol 65 

particles are entrained into the cloud. Previous studies have used the 532 nm observations 66 

from the CALIPSO lidar to estimate the distance from the aerosol layer bottom to the 67 

cloud top (referred to hereafter as AB2CT distance for short). Costantino & Bréon [2010] 68 

show that 84% of the time the AB2CT distance in SE Atlantic is larger than 250m.  69 

Devasthale and Thomas [2011] found that in 0o to 30oS region, 90-95% of above-cloud-70 



 2 

aerosol cases has an AB2CT distance greater than 100m. Yu et al. [2010] derived the 71 

average AB2CT of 1700 m over a two-year period in SE Atlantic. These analyses based 72 

on CALIOP 532 nm observations seem to indicate that the seasonal aerosol layer in SE 73 

Atlantic is well separated from the underlying clouds and thus the aerosol indirect effects 74 

may be secondary in comparison to the aerosol direct and semi-direct effects (e.g., 75 

[Sakaeda et al., 2011]). 76 

 77 

It is known that the CALIOP 532 nm based layer detection often misses the lowest 78 

boundary of a thick aerosol layer, thereby biasing the bottom of the aerosol layer too 79 

high. This may be especially problematic for daytime observations [Meyer et al., 2013]. 80 

Recently, several novel remote sensing techniques have been developed to retrieve the 81 

AOD (Aerosol Optical Depth) of above-cloud absorbing aerosol layers from passive 82 

sensors (e.g. [Waquet et al., 2009; Torres et al., 2011; Meyer et al., 2015]). In addition, 83 

an alternative lidar method has been developed for CALIOP, utilizing signals from the 84 

underlying cloud instead of the attenuated backscatter profile [Hu et al., 2007; Liu et al., 85 

2015]. When compared with the retrievals from passive sensors and the alternative 86 

CALIOP algorithm, the operational 532nm CALIOP AOD retrievals are systematically 87 

biased low by 26% on average [Liu et al., 2015], and can be up to a factor of 5 lower 88 

[Jethva et al., 2014]. A likely explanation for this bias is that the strong aerosol 89 

attenuation at 532 nm by the upper portion of the aerosol layer together with the small 90 

backscatter cross section of the aerosol particles, substantially weakens the attenuated 91 

backscatter signal from the lower part of the aerosol layer to a level under the detection 92 

threshold of CALIOP [Kacenelenbogen et al., 2011; Torres et al., 2013; Jethva et al., 93 

2014; Liu et al., 2015]. This laser attenuation issue leads to an overestimation of the 94 

aerosol layer bottom height (too high), an underestimation of the physical thickness of the 95 

aerosol layer (too thin), and thereby an underestimation of AOD (too small).     96 

 97 

In this study, we seek to shed new light on the vertical distribution of the SE Atlantic 98 

absorbing aerosol layer with respect to the underlying clouds using observations from 99 

NASA’s CATS mission. Because of instrument and algorithm differences, CATS ACA 100 

retrieval suffers much less from the laser saturation-induced bias than CALIOP 532nm 101 

algorithm. We do a comparative analysis of CATS and CALIOP retrievals in the SE 102 

Atlantic region for two recent biomass burning seasons (2015 and 2016). As shown in the 103 

letter, the CATS 1064nm observations suggest that bottom of the ACA layer is much 104 

lower, and therefore closer to underlying cloud top, than previously estimated based on 105 

CALIOP 532nm observations. Our results are important for future studies of the 106 

microphysical indirect, as well as the semi-direct, effects of ACA on underlying clouds. 107 

2. Data 108 

The occurrence frequency of above-cloud-aerosol in the SE Atlantic (20W to 20E; 30S to 109 

10N) is highest during July-to-October (JASO) with the peak during August-September 110 

[Zhang et al., 2016]. In this study, we focus on the two biomass burning seasons (JASO) 111 

of 2015 and 2016 so that we can directly compare CALIPSO and CATS (Figure 1). 112 

2.1. CALIOP 113 

The lidar instrument onboard the CALIPSO mission, which has an orbital height of ~700 114 

km, is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). CALIOP 115 
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directly measures the range-resolved total (particulate plus molecular) attenuated 116 

backscatter signal at two wavelengths, 532nm and 1064nm, using analog detection. In 117 

addition to the total attenuated backscatter, CALIOP also measures two orthogonal 118 

polarized components of the 532nm-backscatter signal [Winker et al., 2009]. The 119 

accuracy of the CALIOP Level-2 (L2) data products (aerosol type, particulate backscatter 120 

and extinction coefficient, optical depth) is dependent on the accurate detection of cloud 121 

and aerosol layers.  122 

 123 

Uniform cloud and aerosol layer detection and cloud-aerosol discrimination (CAD) 124 

techniques are challenging due to the complexity of atmospheric scenes encountered. The 125 

current version CALIOP selective, iterated boundary location (SIBYL) algorithm uses 126 

the 532nm total attenuated backscattered signals to determine boundaries of cloud and 127 

aerosol layers, with a typical vertical resolution of 30 m [Vaughan et al., 2009]. The 128 

SIBYL scheme detects atmospheric features by iteratively comparing horizontally 129 

averaged CALIOP 532 nm total attenuated backscatter profiles at multiple horizontal 130 

resolutions. The CALIOP CAD algorithm is a multidimensional probability distribution 131 

function (PDF) technique [Liu et al., 2004; 2009] based on statistical differences of 132 

several cloud and aerosol properties (e.g., layer-integrated 532nm attenuated backscatter, 133 

layer-integrated backscatter color ratio, etc.). Previous studies have shown the SIBYL 134 

and CAD algorithms perform well for cirrus clouds and several aerosol types [McGill et 135 

al., 2007; Yorks et al., 2011; Burton et al., 2013]. 136 

 137 

2.2. CATS  138 

CATS is an elastic backscatter lidar employing photon counting detection and two high-139 

repetition rate lasers that operate at 532 and 1064nm [McGill et al., 2015] that has been 140 

operating on the ISS since February 2015. The ISS orbit, which is at an altitude of ~415 141 

km and a 51-degree inclination, allows CATS to observe locations at different local times 142 

each overpass (~60 days to complete full diurnal cycle) with roughly a three-day repeat 143 

cycle. 144 

 145 

The CATS layer detection algorithm is a threshold-based layer detection method that is 146 

nearly identical to the CALIOP-SIBYL technique with four distinct differences, namely 147 

the use of 60 m vertical resolution, a single horizontal spatial resolution (5km), the use of 148 

the 1064nm wavelength rather than 532nm, and a technique to identify clouds embedded 149 

within aerosol layers [Yorks et al., 2015]. The CATS L2 Operational (L2O) CAD 150 

algorithm is a multidimensional PDF technique like the CALIOP one [Yorks et al. 2015], 151 

but uses the layer-integrated attenuated backscatter at 1064 nm and other variables such 152 

as layer mid-temperature and layer thickness instead of the layer-integrated backscatter 153 

color ratio due to the unreliable 532 nm data in Mode 7.2. The use of a single horizontal 154 

spatial resolution in the CATS algorithm misses optically thin cirrus clouds and aerosols 155 

during the daytime in the CATS L2O Version 1-05 data products, though it performs well 156 

during nighttime observations. Future versions of CATS L2O data products will include 157 

layer detection at 60 km, but since Version 1-05 is used in this study, CATS daytime data 158 

was excluded.  159 
 160 
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For above-cloud aerosol (ACA), the more relevant difference between the algorithms is 161 

the preferred wavelength for atmospheric layer detection. The current CALIOP-SIBYL 162 

primarily uses 532 nm because it has higher signal-to-noise ratios (SNR) and lower 163 

minimum detectable backscatter (MDB,weakest aerosol backscatter coefficient that can 164 

be detected) than the CALIOP 1064 nm data resulting in more accurate uniform cloud 165 

and aerosol layer detection [Vaughan et al., 2009]. The CATS layer detection algorithm 166 

uses the 1064 nm attenuated scattering ratio because the CATS 532 nm data in Mode 7.2 167 

is extremely noisy and the 1064 nm MDB is orders of magnitude lower [Yorks et al., 168 

2016]. For ACA detection specifically, the 1064 nm wavelength is preferred over the 532 169 

nm wavelength for layer detection. The aerosol signal at 1064 nm has sixteen times less 170 

molecular contamination compared to 532 nm. As discussed in Section 1, the 532 nm 171 

backscatter signal may be insensitive to the entire vertical extent of absorbing aerosol 172 

layers. Because aerosol extinction is usually smaller at 1064 nm than 532 nm, and the 173 

CATS 1064nm backscatter signal is very robust, the vertical extent of absorbing aerosol 174 

layers is fully captured from CATS 1064 nm backscatter profiles. It is worth mentioning 175 

that the current CATS operational algorithm uses AB2CT<360 m as the threshold to 176 

detect the clouds embedded within aerosol layers (CEAL) [Yorks et al. 2017]. When 177 

AB2CT<360, the ACA and the cloud below is merged and identified a CEAL case.  178 

 179 

The detectability of the aerosol layer base using 532 and 1064 nm is demonstrated in 180 

Figure 1. CATS and CALIPSO passed over the same ACA layer over the SE Atlantic on 181 

06 August 2016, although the differing orbits of the ISS and CALIPSO mean that the two 182 

curtains do not align exactly. There is a 0.1-1.0 km gap between cloud top and aerosol 183 

base in the attenuated total backscatter and vertical feature mask based on CALIOP 532 184 

nm data. In contrast, CATS 1064 nm observation finds the aerosol plume to extend all the 185 

way to the cloud top, which is also confirmed by the CALIOP 1064nm attenuated 186 

backscatter observation. The example clearly demonstrates the advantage of 1064nm 187 

over 532 nm-based layer detection technique for identifying the bottom of thick smoke 188 

layers. Although CALIOP also has the 1064 nm observation, it has not yet been utilized 189 

in the current operational algorithm. Note that the differences between CALIOP and 190 

CATS observations shown below are mainly due to the use of different wavelength (i.e., 191 

532nm vs. 1064nm) for layer detection. At the moment of writing, the CALIPSO 192 

operational product team is planning to make more use of the 1064nm observations in 193 

their operational layer detection algorithm, which could significantly improve its 194 

retrievals for thick aerosol layers like the example in Figure 1.  195 

 196 

3. Results  197 

We have used the following criteria to identify ACA columns in both CALIOP and 198 

CATS layer products: (1) the cloud layer product identifies liquid phase cloud at the top 199 

layer of the profile; (2) the aerosol layer product identifies at least one layer of aerosol in 200 

the profile; (3) the base height of at least one aerosol layer is higher than the top of the 201 

highest cloud layer. In the SE Atlantic region, most ACA cases are simple, with only one 202 

aerosol layer on top of single-layer MBL clouds. After the identification of ACA 203 

columns, we compute the AB2CT by calculating the difference between the minimum 204 

aerosol base height which is greater than maximum cloud top height and the maximum 205 

cloud top height. For CALIOP, we derived the ACA and cloud statistics for both daytime 206 
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and nighttime conditions (though daytime and nighttime statistics are computed 207 

separately). The CATS results are only for nighttime since its aerosol retrieval does not 208 

perform well during daytime at the fixed 5 km horizontal resolution as discussed above.  209 

 210 

Figure 2 (first row) shows the multi-year (2015-2016) SE Atlantic JASO Cloud Fraction 211 

(CF), defined as 𝐶𝐹 = 𝑁𝑐𝑙𝑜𝑢𝑑𝑦/𝑁𝑡𝑜𝑡𝑎𝑙 in 2𝑜×2𝑜 grid boxes where 𝑁𝑐𝑙𝑜𝑢𝑑𝑦 is the number 212 

of cloudy columns and 𝑁𝑡𝑜𝑡𝑎𝑙   is the number of total columns. Because we are interested 213 

in aerosol above low-level MBL clouds, ACA frequency (ACA_F) is shown in the 214 

second row of Figure 2 is defined as 𝐴𝐶𝐴_𝐹 = 𝑁𝐴𝐶𝐴/𝑁𝑐𝑙𝑜𝑢𝑑𝑦 where 𝑁𝐴𝐶𝐴 is the number 215 

of ACA columns. Among the three datasets, CATS nighttime observations identify the 216 

highest ACA occurrence frequency, with domain averaged ACA_F around 0.24. 217 

CALIOP daytime observations have the lowest ACA occurrence frequency, with domain 218 

averaged ACA_F only around 0.17. The CALIOP nighttime observations are comparable 219 

to the CATS nighttime observations (domain average ACA_F ~ 0.23). Some differences 220 

between the three datasets may have physical explanations. For example, CALIOP 221 

observes a larger CF during nighttime than during daytime, which is likely a result of the 222 

strong cloud diurnal cycle in the SE Atlantic region [Min and Zhang, 2014]. The other 223 

differences may stem from algorithm and instrument differences. For example, the lower 224 

ACA_F using daytime CALIOP might be an artifact due to the impact of background 225 

solar noise on the lidar retrieval [Liu et al., 2015].  226 
 227 
Overall, the results in Figure 2 suggest that, despite some minor differences, CALIOP 228 

and CATS observe similar geographical patterns of ACA in the SE Atlantic. We now 229 

focus on the vertical distribution of aerosol and cloud from the two instruments. Figure 3 230 

shows the two-year (2015-2016) mean aerosol layer base height (top row), cloud layer 231 

top height (middle row) and AB2CT distance (bottom row) of ACA over the SE Atlantic 232 

region during JASO from CALIOP and CATS. While the magnitudes differ, cloud top 233 

heights from all three datasets show a similar pattern, lowest off the coast of Namibia 234 

(near 20S and 10E) and gradually increasing along the northwest direction to about 2km 235 

around 5S and 15W. In contrast to the similarity of cloud top height, the mean ACA base 236 

height from the three datasets show significant differences. ACA base height from 237 

daytime CALIOP observations is much higher than nighttime CALIOP, which is in turn 238 

higher than nighttime CATS. As a result, the AB2CT distance from nighttime CATS is 239 

below 500m in most of the SE Atlantic region, suggesting that the aerosol layer extends 240 

close to the cloud top. On the other hand, a clear separation between aerosol base and 241 

cloud top during both daytime and nighttime is implied by the CALIOP data, a likely 242 

result of the abovementioned CALIOP ACA layer detection issues.  243 

 244 

We analyzed the AB2CT distances from the three observations further in Figure 4. Here, 245 

we show the Cumulative Density Function (CDF) of the AB2CT distance for the 246 

sampling-masked ACA cases of Fig. 3. According to CATS nighttime 1064 nm 247 

observations (red curve), about 60% of ACA cases are identified as CEAL (i.e., 248 

AB2CT<360m), in contrast to only 15% and 6% occurrence of such cases in CALIOP 249 

532nm nighttime (blue curve) and daytime (green curve) observations, respectively. 250 

Moreover, 82% and 64% of ACA cases have AB2CT>1 km according to the daytime and 251 
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nighttime CALIOP 532nm observations, respectively, in contrast to 22% according to 252 

CATS observations.   253 

 254 

Figure 5 shows meridionally-averaged daytime (a) and nighttime CALIOP (b) 532nm, 255 

and nighttime CATS 1064nm (c) observations of ACA top (dashed red line) and bottom 256 

(solid red line) height, cloud top height (blue line), and the fraction of ACA cases with 257 

AB2CT<360m (black line). Also shown are one standard deviation variability for ACA 258 

top (red error bars), ACA base (light red shades) and cloud top (light blue shades). All 259 

three observations show nearly the same top of aerosol layer, just below 4km. The cloud 260 

top heights are also similar in all three observations, rising from 1km near the coast 261 

westward to about 1.5-2.0 km at 19W. Daytime CALIOP observes slightly higher cloud 262 

top height (domain average 1.39km) compared to nighttime (domain average 1.33km). 263 

Among all the observations, the CATS detects the highest cloud top height (domain 264 

average 1.60km) among all three data sets. In contrast to aerosol top and cloud top 265 

heights, ACA base heights are substantially different among the three data sets. The 266 

CALIOP nighttime product (Figure 5b) gives domain-averaged ACA base height at 267 

2.63km; daytime CALPSO retrievals (Figure 5a) are even higher. Nighttime CATS 1064 268 

nm (Figure 5c), however, observes a significantly lower ACA domain-averaged base 269 

height around 2km.  270 

 271 

Even after considering one standard deviation variability, there is still a clear separation 272 

between the ACA base and cloud top in both the daytime (Figure 5a) and nighttime 273 

(Figure 5b) CALIOP retrievals, confirmed by the small values of AB2CT<360m 274 

throughout the domain. With CATS (Figure 5c), however, there is clear evidence that the 275 

ACA base and cloud top are in much closer proximity than is implied by CALIOP 532nm 276 

observation, as the AB2CT<360m is mostly around 60%.  277 

4. Summary and Discussion  278 

The microphysical indirect effects of the seasonal transported aerosols in the SE Atlantic 279 

are often overlooked in the literature. This is partly because CALIOP’s 532nm-based 280 

operational layer detection algorithm often detects the aerosol layer bottom too high and 281 

thereby suggests that the above-cloud aerosol layer is well separated from the underlying 282 

clouds. The newly launched CATS mission provides a new dataset of the vertical 283 

distribution of aerosol and clouds. Several instrument and algorithm advantages of 284 

CATS, chiefly among which is the primary use of 1064 nm for layer detection, allows it 285 

to better identify the full vertical extend of the SE Atlantic ACA layer than CALIOP 286 

532nm product. We have compared the current CATS and CALIPSO products during 287 

JASO of 2015 and 2016 over the SE Atlantic. The CF, ACA_F and cloud top 288 

geographical patterns from the two instruments agree well. However, CATS 1064nm 289 

observes the ACA layer bottom height much lower and much closer to the underlying 290 

cloud top than CALIOP 532nm does. According to CATS, about 60% of the ACA cases 291 

have an AB2CT<360m, in contrast to the 15% and 6% based on CALIOP nighttime and 292 

daytime 532nm observations, respectively.  293 

 294 

Our study provides direct evidence that space-based lidar layer detection at 1064 nm is 295 

more representative of the true ACA scene compared to 532 nm. More importantly, our 296 

study suggests that the occurrence of aerosol entrainment into clouds might be much 297 
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more frequent than previously thought based on CALIOP 532nm observations. This 298 

implies that the microphysical indirect effects could be an important mechanism through 299 

which the transported aerosol influences the clouds and radiation in SE Atlantic region. 300 

Finally, an accurate measurement of the vertical distribution of aerosols would also help 301 

us better understand the semi-direct effects of the smoke aerosols.  302 

 303 

  304 
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 305 
Figure 1 (a) A smoke above MBL cloud event on Aug. 06, 2016. Red dots in the African Continent are fire 306 
events. Attenuated total backscatter of CATS 1064nm (b), CALIPSO 532nm (c) and CALIPSO 1064nm. The 307 
dashed lines correspond to the point where the CAT and CALIPSO tracks overlap with each other.  308 

  309 
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 310 
Figure 2 Multi-year (2015-2016) seasonal mean (July to October) cloud fraction (upper row) in the SE Atlantic 311 
region based on (a) CALIPSO daytime, (b) CALIPSO nighttime and (c) CATS nighttime observation. The 312 
seasonal mean occurrence frequency (lower row) from (d) CALIPSO daytime, (e) CALIPSO nighttime and (f) 313 
CATS nighttime observations. 314 

  315 
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 316 
Figure 3 Multi-year (2015-2016) seasonal mean aerosol layer base height (top row), cloud layer top height 317 
(middle row), and aerosol base to cloud top (AB2CT) distance (bottom row) of ACA over the SE Atlantic region 318 
during JASO from CALIOP and CATS. 319 

  320 
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 321 
Figure 4 Cumulative probability distribution function of the distance between aerosol layer bottom and cloud 322 
top (AB2CT distance). These curves are derived from the multi-year seasonal ACA data used in Figure 3. 323 

  324 
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 325 
Figure 5 Meridionally-averaged aerosol bottom (solid red line), top (dashed red line) and cloud top (solid blue 326 
line) heights, with fraction of AB2CT<360m (black line), for the SE Atlantic region during JASO, 2015-2016. 327 
One standard deviation variability for each are denoted by the red error bars for aerosol top height, and by the 328 
red and blue shaded regions for the aerosol bottom and cloud top heights, respectively. 329 

 330 

  331 



 13 

 332 

References 333 

 334 

Adebiyi, A. A., and P. Zuidema (2016), The role of the southern African easterly jet in 335 

modifying the southeast Atlantic aerosol and cloud environments, Quarterly Journal 336 

of the Royal Meteorological Society, 142(697), 1574–1589, doi:10.1002/qj.2765. 337 

Burton, S. P., R. A. Ferrare, M. A. Vaughan, A. H. Omar, R. R. Rogers, C. A. Hostetler, 338 

and J. W. Hair (2013), Aerosol classification from airborne HSRL and comparisons 339 

with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6(5), 1397–1412, 340 

doi:10.5194/amt-6-1397-2013. 341 

Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson (2009), 342 

Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature 343 

Geoscience, 2(3), 181–184, doi:10.1038/ngeo437. 344 

Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan 345 

(2008), Quantifying above‐cloud aerosol using spaceborne lidar for improved 346 

understanding of cloudy‐sky direct climate forcing, J. Geophys. Res., 113(D13), 347 

D13206, doi:10.1029/2007JD009433. 348 

Costantino, L., and F. M. Bréon (2013), Aerosol indirect effect on warm clouds over 349 

South-East Atlantic, from co-located MODIS and CALIPSO observations, 350 

Atmospheric Chemistry and Physics, 13(1), 69–88, doi:10.5194/acp-13-69-2013. 351 

Costantino, L., and F.-M. Bréon (2010), Analysis of aerosol-cloud interaction from multi-352 

sensor satellite observations, Geophysical Research Letters, 37(11), L11801–n/a, 353 

doi:doi:10.1029/2009GL041828. 354 

Devasthale, A., and M. A. Thomas (2011), A global survey of aerosol-liquid water cloud 355 

overlap based on four years of CALIPSO-CALIOP data, Atmospheric Chemistry and 356 

Physics, 11(3), 1143–1154, doi:10.5194/acp-11-1143-2011. 357 

Hu, Y., M. Vaughan, Zhaoyan Liu, K. Powell, and S. Rodier (2007), Retrieving Optical 358 

Depths and Lidar Ratios for Transparent Layers Above Opaque Water Clouds From 359 

CALIPSO Lidar Measurements, Geoscience and Remote Sensing Letters, IEEE DOI 360 

- 10.1109/LGRS.2007.901085, 4(4), 523–526. 361 

Jethva, H., O. Torres, F. Waquet, D. Chand, and Y. Hu (2014), How do A‐train sensors 362 

intercompare in the retrieval of above‐cloud aerosol optical depth? A case study‐363 

based assessment, Geophysical Research Letters, 41(1), 186–192, 364 

doi:10.1002/2013GL058405. 365 

Johnson, B. T., K. P. Shine, and P. M. Forster (2004), The semi-direct aerosol effect: 366 

Impact of absorbing aerosols on marine stratocumulus, Quarterly Journal of the 367 

Royal Meteorological Society, 130(599), 1407–1422, doi:10.1256/qj.03.61. 368 



 14 

Kacenelenbogen, M., M. A. Vaughan, J. Redemann, R. M. Hoff, R. R. Rogers, R. A. 369 

Ferrare, P. B. Russell, C. A. Hostetler, J. W. Hair, and B. N. Holben (2011), An 370 

accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol 371 

extinction product based on a detailed multi-sensor, multi-platform case study, 372 

Atmospheric Chemistry and Physics, doi:10.5194/acp-11-3981-2011. 373 

Liu, Z., D. Winker, A. Omar, M. Vaughan, J. Kar, C. Trepte, Y. Hu, and G. Schuster 374 

(2015), Evaluation of CALIOP 532 nm aerosol optical depth over opaque water 375 

clouds, ACP, 15(3), 1265–1288, doi:10.5194/acpd-14-23583-2014. 376 

Liu, Z., M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, 377 

and M. McGill (2004), Use of probability distribution functions for discriminating 378 

between cloud and aerosol in lidar backscatter data, J. Geophys. Res., 109(D15), 379 

1275, doi:10.1029/2004JD004732. 380 

Liu, Z., M. Vaughan, D. Winker, C. Kittaka, B. Getzewich, R. Kuehn, A. Omar, K. 381 

Powell, C. Trepte, and C. Hostetler (2009), The CALIPSOLidar Cloud and Aerosol 382 

Discrimination: Version 2 Algorithm and Initial Assessment of Performance,, 26(7), 383 

1198–1213, doi:10.1175/2009JTECHA1229.1. 384 

McGill, M. J., J. E. Yorks, V. S. Scott, A. W. Kupchock, and P. A. Selmer (2015),  The 385 

Cloud-Aerosol Transport System (CATS): a technology demonstration on the 386 

International Space Station, edited by U. N. Singh, SPIE Optical Engineering + 387 

Applications, 9612, 96120A–96120A–6. 388 

McGill, M. J., M. A. Vaughan, C. R. Trepte, W. D. Hart, D. L. Hlavka, D. M. Winker, 389 

and R. Kuehn (2007), Airborne validation of spatial properties measured by the 390 

CALIPSO lidar, J. Geophys. Res., 112(D20), 5522, doi:10.1029/2007JD008768. 391 

Meyer, K., S. Platnick, and Z. Zhang (2015), Simultaneously inferring above‐cloud 392 

absorbing aerosol optical thickness and underlying liquid phase cloud optical and 393 

microphysical properties using MODIS, Journal of Geophysical Research-394 

Atmospheres, 120(11), 5524–5547, doi:10.1002/2015JD023128. 395 

Meyer, K., S. Platnick, L. Oreopoulos, and D. Lee (2013), Estimating the direct radiative 396 

effect of absorbing aerosols overlying marine boundary layer clouds in the southeast 397 

Atlantic using MODIS and CALIOP, Journal of Geophysical Research-Atmospheres, 398 

118(10), 4801–4815, doi:10.1002/jgrd.50449. 399 

Min, M., and Z. Zhang (2014), On the influence of cloud fraction diurnal cycle and sub-400 

grid cloud optical thickness variability on all-sky direct aerosol radiative forcing, 401 

Journal of Quantitative Spectroscopy and Radiative Transfer, 142 IS -, 25–36, 402 

doi:10.1016/j.jqsrt.2014.03.014. 403 

Painemal, D., P. Minnis, and M. Nordeen (2015), Aerosol variability, synoptic‐scale 404 

processes, and their link to the cloud microphysics over the northeast Pacific during 405 

MAGIC, Journal of Geophysical Research-Atmospheres, 120(10), 5122–5139, 406 



 15 

doi:10.1002/2015JD023175. 407 

Sakaeda, N., R. Wood, and P. J. Rasch (2011), Direct and semidirect aerosol effects of 408 

southern African biomass burning aerosol, J Geophys Res, 116(D12), D12205, 409 

doi:10.1029/2010JD015540. 410 

Torres, O., C. Ahn, and Z. Chen (2013), Improvements to the OMI near-UV aerosol 411 

algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6(11), 412 

3257–3270, doi:10.5194/amt-6-3257-2013. 413 

Torres, O., H. Jethva, and P. K. Bhartia (2011), Retrieval of Aerosol Optical Depth above 414 

Clouds from OMI Observations: Sensitivity Analysis and Case Studies, J. Atmos. 415 

Sci., 69(3), 1037–1053, doi:10.1175/JAS-D-11-0130.1. 416 

Vaughan, M. A., K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, 417 

B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill (2009), Fully Automated 418 

Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements, J. 419 

Atmos. Oceanic Technol., 26(10), 2034–2050, doi:doi: 10.1175/2009JTECHA1228.1. 420 

Waquet, F., J. Riedi, L. C Labonnote, P. Goloub, B. Cairns, J. L. Deuzé, and D. Tanre 421 

(2009), Aerosol Remote Sensing over Clouds Using A-Train Observations, J. Atmos. 422 

Sci., 66(8), 2468–2480, doi:10.1175/2009JAS3026.1. 423 

Wilcox, E. M. (2010), Stratocumulus cloud thickening beneath layers of absorbing smoke 424 

aerosol, Atmospheric Chemistry and Physics, 10(23), 11769–11777, doi:10.5194/acp-425 

10-11769-2010. 426 

Wilcox, E. M. (2012), Direct and semi-direct radiative forcing of smoke aerosols over 427 

clouds, Atmospheric Chemistry and Physics, 12(1), 139–149, doi:10.5194/acp-12-428 

139-2012. 429 

Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and 430 

S. A. Young (2009), Overview of the CALIPSO mission and CALIOP data 431 

processing algorithms,, 26(11), 2310–2323. 432 

Yorks, J. E., D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. 433 

Kuehn (2011), Airborne validation of cirrus cloud properties derived from CALIPSO 434 

lidar measurements: Spatial properties, J. Geophys. Res., 116(D19), 1073, 435 

doi:10.1029/2011JD015942. 436 

Yorks, J. E., M. J. McGill, S. P. Palm, D. L. Hlavka, P. A. Selmer, E. P. Nowottnick, M. 437 

A. Vaughan, and S. D. Rodier (2015), An Overview of the Cloud-Aerosol Transport 438 

System (CATS) Processing Algorithms and Data Products. 439 

Yorks, J. E., M. J. McGill, S. P. Palm, D. L. Hlavka, P. A. Selmer, E. P. Nowottnick, M. 440 

A. Vaughan, S. D. Rodier, and W. D. Hart (2016), An overview of the CATS level 1 441 

processing algorithms and data products, Geophysical Research Letters, 43(9), 4632–442 

4639. 443 



 16 

Yu, H., and Z. Zhang (2013), New Directions: Emerging satellite observations of above-444 

cloud aerosols and direct radiative forcing, Atmospheric Environment, 72(0), 36–40, 445 

doi:10.1016/j.atmosenv.2013.02.017. 446 

Yu, H., Y. Zhang, M. Chin, Z. Liu, A. Omar, L. A. Remer, Y. Yang, T. Yuan, and J. 447 

Zhang (2010), An integrated analysis of aerosol above clouds from A-Train multi-448 

sensor measurements, Remote Sensing of Environment, 121, 125–131, 449 

doi:10.1016/j.rse.2012.01.011. 450 

Zhang, Z., K. Meyer, H. Yu, S. Platnick, P. Colarco, Z. Liu, and L. Oreopoulos (2016), 451 

Shortwave direct radiative effects of above-cloud aerosols over global oceans derived 452 

from 8 years of CALIOP and MODIS observations, ACP, 16(5), 2877–2900, 453 

doi:10.5194/acpd-15-26357-2015. 454 

 455 


	Seasonally Transported Aerosol Layers over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported
	1. Introduction
	2. Data
	2.1. CALIOP
	2.2. CATS
	3. Results
	4. Summary and Discussion
	References


